Table of contents

Definition

Definition. (Eigenvalues and Eigenvectors) An eigenvector of an \(n\times n\) matrix \(A\) is a nonzero vector \(\mathbf{x}\) such that \(A\mathbf{x}=\lambda \mathbf{x}\) for some scalar \(\lambda\). A scalar \(\lambda\) is called an eigenvalue of \(A\) if there is a nontrivial solution \mathbf{x} of \(A\mathbf{x}=\lambda\mathbf{x}\); such an \(\mathbf{x}\) is called an eigenvector corresponding to \(\lambda\).


EXAMPLE 1. The vector \(\mathbf{v}=\begin{bmatrix}1\\1\end{bmatrix}\) is an eigenvector of eigenvalue \(-2\) for the matrix \(A=\begin{bmatrix} -1&3\\3&-1\end{bmatrix}\).

Indeed, if we multiply the matrix and the vector we obtain

\[A\mathbf{v} = \begin{bmatrix} -1&3\\3&-1\end{bmatrix} \cdot \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\2\end{bmatrix} = 2 \begin{bmatrix}1\\1\end{bmatrix} = 2\mathbf{v}\]


Finding Egienvalues and Eigenvectors

Eigenvectors

We can observe that \(A\mathbf{x}=\lambda\mathbf{x}\) is equivalent to

\[\begin{equation} (A-\lambda I)\mathbf{x} = \mathbf{0}, \label{eq:eigs} \end{equation}\]

where \(I\) is the identity matrix. Indeed, \(\lambda I \mathbf{x} =\lambda \mathbf{x}\).

Therefore, finding the eigenvalues and associated eigenvectors of a matrix is equivalent to finding nontrivial solutions to the system of equations described in \eqref{eq:eigs}.

NOTE: While a vector solution \(\mathbf{x}\) cannot be zero, the corresponding eigenvalue \(\lambda\) could be zero.

Definition. (Eigenspace) The set of all solutions to \eqref{eq:eigs} is just the null space of the matrix \(A-\lambda I\). This set is a subspace of \(\mathbb{R}^n\) and is called the eigenspace of \(A\) corresponding to \(\lambda\). The eigenspace consists of the zero vector and all the eigenvectors corresponding to \(\lambda\).


EXAMPLE 2. The matrix \(A=\begin{bmatrix} -2 & 3 & -2 \\ 1 & 0 & -2 \\ 1 & 3 & -5 \end{bmatrix}\) has \(-3\) as one of its eigenvalues. Let’s find the corresponding eigenspace. First, we calculate \(A-(-3)I\),

\[A-(-3)I = A+3I = \begin{bmatrix} 1 & 3 & -2 \\ 1 & 3 & -2 \\ 1 & 3 & -2 \end{bmatrix}.\]

Performing basic row operations (R2-1\(\times\)R1) and (R3-1\(\times\)R1) we obtain the matrix

\[\begin{bmatrix}1 & 3 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}.\]

Now, considering \((A-\lambda I)\mathbf{x}=\mathbf{0}\), and \(\mathbf{x}=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\) we obtain the equation \begin{equation} x_1+3x_2-2x_3=0. \label{eq:eigvec_Ex2} \end{equation}

Isolating \(x_1\) in \eqref{eq:eigvec_Ex2}, we obtain

\[\mathbf{x} = \begin{bmatrix} -3x_2+2x_3 \\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix}-3x_2\\x_2\\0\end{bmatrix} + \begin{bmatrix}2x_3\\0\\x_3\end{bmatrix}=x_2\begin{bmatrix}-3\\1\\0\end{bmatrix} + x_3\begin{bmatrix}2\\0\\1\end{bmatrix}\]

with \(x_2\) and \(x_3\) free variables. So the eigenspace for \(\lambda=-3\) is a subspace of dimension \(2\) in \(\mathbb{R}^3\) with basis

\[\left\lbrace \begin{bmatrix}-3\\1\\0\end{bmatrix}, \begin{bmatrix}2\\0\\1\end{bmatrix} \right\rbrace\]


The method used in the previous example provides a general method for finding eigenvectors and eigenspaces when the eigenvalues are known. But, how do we find eigenvalues?

Eigenvalues

To find the eigenvalues, we need to find the nontrivial solutions to equation \eqref{eq:eigs}. So we need to determine those values of \(\lambda\) for which equation \eqref{eq:eigs} has a nontrivial solution.

This problem is equivalent to finding those values of \(\lambda\) for which the matrix \((A-\lambda I)\) is singular (or its inverse does not exist). That is, we need to find those values of \(\lambda\) such that

\begin{equation} \text{det}(A-\lambda I)=0. \label{eq:charac_eq} \end{equation}

This scalar equation is called characteristic equation.

\(\lambda\) is an eigenvalue of an \(n\times n\) matrix \(A\) if and only if \(\lambda\) satisfies the characteristic equation \(\text{det}(A-\lambda I)=0\).


EXAMPLE 3. In the previous example, we saw that the matrix

\[A=\begin{bmatrix} -2 & 3 & -2 \\ 1 & 0 & -2 \\ 1 & 3 & -5 \end{bmatrix}\]

has \(-3\) as one of its eigenvalues. But what are all the eigenvalues of \(A\)?

We will use the characteristic equation \eqref{eq:charac_eq}.

First we compute \(A-\lambda I\):

\[A-\lambda I = \begin{bmatrix} -{\lambda} - 2 & 3 & -2 \\ 1 & -{\lambda} & -2 \\ 1 & 3 & -{\lambda} - 5\end{bmatrix},\]

and then we find the determinant:

\[\text{det}(A-\lambda I) = -{\lambda}^{3} - 7 \, {\lambda}^{2} - 15 \, {\lambda} - 9\]

Since we know that \(-3\) is a zero of the equation above, we can factor \(\lambda+3\):

\[\begin{align*} \text{det}(A-\lambda I) &= (\lambda+3)(-\lambda^2 - 4\lambda - 3) \\ &= -(\lambda+3)^2(\lambda+1) \end{align*}\]

So we can see that the eigenvalues are \(\lambda=-3\) and \(\lambda=-1\).